

Conversion of Biomass into Hydro Char from Hydrothermal Process

Abolee Jagtap

 Ph. D. Scholar, Department of Unconventional Energy Sources and Electrical Engineering,
Post Graduate Institute, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola

ARTICLE ID: 10

Background information

India has a rapidly growing demand for renewable energy, driven by the country's commitment to reduce greenhouse gas emissions, increase energy security, and provide electricity to millions of people who currently lack access to it. India has set a target of achieving 450 GW of renewable energy capacity by 2030, which includes 280 GW of solar, 140 GW of wind, and 10 GW of biomass. The Indian government has introduced a range of policies and incentives to encourage investment in renewable energy, including feed-in tariffs, tax incentives, and subsidies for renewable energy projects. The government has also launched a number of initiatives to promote the adoption of renewable energy technologies, such as the National Solar Mission, which aims to achieve 100 GW of solar capacity by 2022.Overall, the demand for renewable energy in India is expected to continue to grow rapidly in the coming years, driven by the country's ambitious renewable energy technologies.

Why biomass conversion technologies are important?

- Renewable energy source: Biomass is a renewable energy source that can be continuously replenished, making it an important alternative to non-renewable fossil fuels such as coal, oil, and natural gas.
- Reduced greenhouse gas emissions: Biomass conversion technologies can help to reduce greenhouse gas emissions and mitigate climate change. Biomass is a carbonneutral energy source, meaning that the carbon dioxide released during combustion is balanced by the carbon dioxide absorbed by the plants during their growth.
- **Waste reduction:** Biomass conversion technologies can help to reduce waste by converting agricultural, forestry, and municipal waste into energy. This reduces the

amount of waste sent to landfills, which can help reduce greenhouse gas emissions and environmental pollution.

- Energy security: Biomass conversion technologies can improve energy security by reducing dependence on imported fossil fuels. Biomass is a locally available resource that can be used to produce energy, reducing the need for energy imports and increasing energy independence.
- **Rural development:** Biomass conversion technologies can provide economic opportunities in rural areas by creating jobs and supporting local industries. This can help to promote rural development and reduce poverty.

Conversion of biomass into hydrochar

The conversion of biomass into hydrochar is a promising technology for producing a renewable and carbon-neutral fuel from organic waste materials. Hydrochar is a solid material that is similar to charcoal, but is produced through a hydrothermal carbonization process that uses water and high temperatures and pressures to break down the biomass. The process involves heating the biomass in the presence of water in a closed reactor vessel, which leads to the formation of a slurry. The slurry is then dried and the resulting hydrochar can be used as a heating or electricity generation fuel. The conversion of biomass into hydrochar has several advantages. Firstly, it is a renewable and carbon-neutral fuel source, which can help reduce greenhouse gas emissions and mitigate climate change. Secondly, it can be produced from a wide range of organic waste materials, including agricultural waste, forestry residues, and municipal solid waste, making it a versatile and locally available resource. Finally, hydrochar can be used in a variety of applications, such as energy production, soil amendment, and water treatment. The process flow chart of hydro char production as shown in Fig. 1. However, there are also some challenges associated with the conversion of biomass into hydrochar. These include the high capital costs of the hydrothermal carbonization equipment, the need for consistent and high-quality biomass feedstock, and the potential for environmental impacts if the waste products of hydrochar production are not properly managed. In General, the conversion of biomass into hydrochar is a promising technology that can provide a sustainable and renewable source of energy from organic waste materials. Further research and development, as well as policy support, will be needed to overcome the challenges and maximize the benefits of this technology.

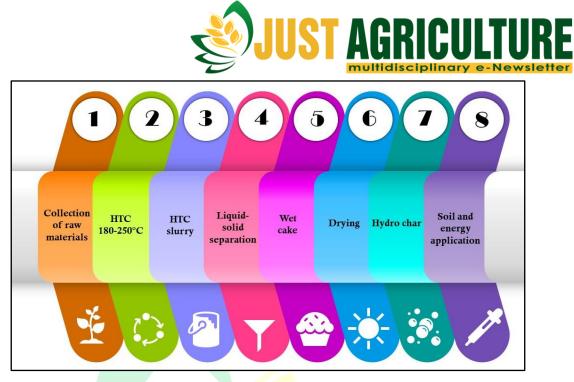


Fig. 1 Process flow chart of hydro char production

Factor affecting hydrochar properties

- Feedstock composition: The type and composition of the biomass feedstock used in hydrochar production can affect the properties of the resulting hydrochar. Different feedstocks have different chemical compositions and properties, which can impact the energy content, stability, and other characteristics of the hydrochar.
- **4 Temperature and residence time:** The temperature and residence time during the hydrothermal carbonization process can affect the properties of the hydrochar. Higher temperatures and longer residence times generally lead to the production of hydrochar with higher energy content and more stable properties.
- **4 Moisture content:** The moisture content of the biomass feedstock can affect the properties of the hydrochar. Higher moisture content can lead to lower energy content and less stable properties in the hydrochar.
- **PH and other process conditions:** The pH and other process conditions, such as pressure, can affect the properties of the hydrochar. For example, low pH can lead to the production of hydrochar with higher acidity, which can impact its suitability for certain applications.
- **Post-treatment:**Post-treatment processes, such as washing and drying, can affect the properties of the hydrochar. Washing can remove soluble compounds and reduce the

ash content, while drying can increase the energy content and stability of the hydrochar.

Difference between hydro char and biochar

Biochar and hydrochar are both produced through the thermal treatment of biomass, but there are several differences between the two:

	Hydro char	Biochar
Production	Hydrochar, is produced through	Biochar is produced through a
method	hydrothermal carbonization, which	process called pyrolysis, which
	involves heating biomass in the	involves heating biomass in the
	presence of water at high	absence of oxygen to a temperature
	temperatures and pressures (usually	of around 400-800°C. This causes
	around 180-250°C and 20-30 bar)	the biomass to break down into
	for several hours. This process	solid char, liquid tar, and gaseous
	converts the biomass into a solid,	by-products, such as methane and
	black, carbon-rich material called	carbon monoxide. The solid char,
	hydrochar. The presence of water in	which is biochar, is then cooled
	the process allows for the	and collected for use. The absence
	production of hydrochar without	of oxygen during pyrolysis
	the need for external drying,	prevents combustion and the
	making it a more energy-efficient	production of greenhouse gases.
	process than pyrolysis.	
Chemical	Hydrochar, on the other hand, has a	Biochar is typically produced at
properties	higher moisture content (usually	higher temperatures and longer
	between 10-50%) and more	residence times than hydrochar,
	functional groups, such as	resulting in a material with higher
	carboxylic and phenolic groups.	carbon content (typically 60-90%)
	These functional groups make	and more stable properties. It is
	hydrochar more reactive and	also low in moisture content, ash
	suitable for certain applications,	content, and volatile organic
	such as wastewater treatment, soil	compounds. The high carbon
	amendment, and energy production.	content of biochar makes it an

	Hydrochar also contain more	effective tool for carbon
	nutrients and minerals than biochar,	sequestration and mitigating
	which can make it a valuable soil	climate change.
	amendment.	
Application	Hydrochar has a wider range of	Biochar is commonly used as a soil
	potential applications than biochar,	amendment to improve soil
	including energy production, water	fertility, water retention, and
	treatment, and soil amendment.	carbon sequestration. It can also be
	Hydrochar can be used as a solid	used in animal feed, water
	fuel, as a feedstock for the	treatment, and as a fuel source.
	production of biogas, or as a soil	Biochar has been shown to
	amendment to improve soil	improve crop yields, reduce the
	structure and fertility. It can also be	need for synthetic fertilizers, and
	used in wastewater treatment to	increase soil carbon storage.
	remove contaminants and nutrients	
	from water.	
Environmental	Both biochar and hydrochar have the potential to reduce greenhouse gas	
impact	emissions by sequestering carbon in the soil or in products, such as	
	bioplastics. The production of biochar and hydrochar from biomass also	
	has the potential to reduce waste and create a more circular economy.	
	However, the environmental impact of each material depends on the	
	specific production and application methods used. For example, the use	
	of certain feedstocks, such as palm oil or other monoculture crops, for	
	biochar or hydrochar production can have negative environmental	
	impacts, such as deforestation,	habitat destruction, and loss of
	biodiversity. The use of sustainable feedstocks and production methods	
	therefore important to ensure the environmental benefits of biochar and	
	hydrochar production are maximized	

Conclusion

In conclusion, the conversion of biomass into hydrochar through hydrothermal carbonization is a promising technology with numerous potential applications. Hydrochar has

unique chemical properties, such as higher moisture content and more functional groups, which make it suitable for various uses, such as energy production, water treatment, and soil amendment. The properties of hydrochar can be influenced by factors such as feedstock composition, temperature, pressure, and residence time. However, more research is needed to fully understand the effects of these factors on the properties and applications of hydrochar. Overall, hydrochar production can offer several environmental benefits, such as reducing waste and greenhouse gas emissions, as well as promoting sustainable agriculture and circular economies.

Reference

Zhang, Z., Zhu, Z., Shen, B. and Liu, L., 2019. Insights into biochar and hydrochar production and applications: A review. Energy, 171, pp.581-598.

